
b2b slots INTEGRATION

1

Table of contents
 1. The Protocol..3
 2. Creating Backend Communication...3
 3. Integration API's ...4

 3.1 Open Game URL..5
 3.2 Authentication of User API..6
 3.3 Debit API..7
 3.4 Credit API...8
 3.5 Rollback API..9
 3.6 Get Features API...11
 3.7 Activate Features API...12
 3.8 End Features API..14

4 Dictionaries...16
 4.1 Currencies Dictionary..16
 4.2 Game Codes..17
 4.2 Error Codes..18

5. Examples..19
 5.1 Auth..19
 5.2 Debit...20
 5.3 Credit..21
 5.4 Rollback..22
 5.5 Get Features..23
 5.6 Activate Features..24
 5.7 End Features...25

2

1. The Protocol
The integration uses HTTPS POST communications based using Json message type.

The operator can use only HTTPS to communicate with our servers.

For any synchronous or asynchronous communication regarding financial

operations such as debit, credit, and rollback, the Integrator backend must receive a

response with the same transaction_id parameter as the parameter sent in the request.

Json format is used for the backend communication for all kind of APIs

2. Creating Backend Communication
In order to create backend calls it is necessary to retrieve the URL,

Communication Type (protocol name), and exact names of back-end operations.

What follows is the list of possible backend operations:

 auth

 debit

 credit

 rollback (debit refund - in the case of exceptions)

 get features

 end features

3

3. Integration API's

4

The following sequence diagram describes the communication between the Player, Integrator
 and the operator for every call to open the games.

Operator Integrator

Authorization (login, password)

Open game url (game_name, operator_id, user_id, auth_token, currency)

Auth (user_id, user_ip, currency, user_auth_token)

response (operator_id, user_id, user_nickname , auth_token, game_token,
currency, balance, bonus_balance, timestamp, error_code, error_description)

Response (operator_id, user_id,
auth_token, currency)

Play game

Debit (debit_amount, turn_id, user_id, user_ip, currency, game_code,
 game_name, user_game_token, transaction_id)

response (operator_id, user_id, user_nickname , game_token, currency, balance,
 bonus_balance, timestamp, error_code, error_description, transaction_id)

Credit (credit_amount, turn_id, user_id, user_ip, currency, game_code,
game_name, user_game_token, transaction_id)

response (operator_id, user_id, user_nickname , game_token, currency, balance,
 bonus_balance, timestamp, error_code, error_description, transaction_id)

Rollback (rollback_amount, turn_id, user_id, user_ip, currency, game_code,
 game_name, user_game_token, transaction_id)

response (operator_id, user_id, user_nickname , game_token, currency, balance,
 bonus_balance, timestamp, error_code, error_description, transaction_id)

response (balance, bonus_balance, user_id, user_nickname, operator_id,
 error_code, error_description, currency, game_token, timestamp, free_rounds)

Get feature (Activate feature) (user_id, user_ip, currency, user_game_token,
game_code, game_name)

End feature (user_ip, user_id, user_game_token, currency, game_code,
game_name, free_rounds)

response (balance, bonus_balance, user_id, user_nickname, operator_id,
error_code, error_description, currency, game_token, timestamp)

 Players begin authorization on the operator's side and should receive the following parameters to

use in Game URL:

Parameter name Data Type/ Description

operator_id
int (11)

Defines the particular operator that the player belongs to.

user_id
string (128)

An operator's unique identifier for each player

auth_token

string (255)

An unique identifier which is generated and sent from the operator
in order to identify an interaction session

currency
string

The currency code for the player's balance in a particular session

3.1 Open Game URL
The following table describes the parameters supplied by the operator to the Integrator

required to launch the game.

https://int.apiforb2b.com/games/<game_name>.game?operator_id=<operator_id>

&user_id=<user_id>&auth_token=<auth_token>¤cy=<currency>

Parameter name Data Type/ Description

game_name
string

The unique name of the game that the player wants to launch

operator_id
int (11)

Defines the particular operator that the player belongs to.

user_id
string (128)

An operator's unique identifier for each player

auth_token

string (255)

An unique identifier which is generated and sent from the operator,
in order to identify an interaction session

currency

string

The currency code for the player's balance in a particular session:
BTC, LTC, USD, EUR, RUB, KZT, UAH (can be expanded in the future)

Example:

https://int.apiforb2b.com/games/BookOfRaClassic.game?

operator_id=0&user_id=1&auth_token=2a9a36b3487129aa899a57b161325ac6e3772174¤cy=BTC

5

3.2 Authentication of User API

• Description

The Authentication API enables the Integrator system to verify the information received in the

launch protocol. Only once the operators approves this information will the game be available to

the player.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-auth-user-ingame''

An unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_auth_token
string (255)

An unique identifier which is generated and sent from the operator, in order to identify an interaction session

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(will be expanded in the future on request)

Output parameters

api
String

An unique api name that sent from Integrator in request must be set to value is ''do-auth-user-ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

user_id
String (128)

An operator’s unique identifier for each player.

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

balance
String (20)

Money available in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus amount in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

auth_token
String (255)

The player’s initial user_auth_token from operator (by launching the game url) - we use this for validation.

game_token
String (255)

Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully.
If no error is detected, this code value is 0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather displays details of
the error.

6

currency
String

The currency the balance is in.

timestamp

String (15)

Time representation in UNIX milliseconds format.

3.3 Debit API

• Description

The Debit API enables the Integrator platform to withdraw money from the player's wallet through

the operator's server.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-debit-user-ingame''

An unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_game_token
string (255)

An unique identifier which is generated before (in auth api) by the operator to identify a session’s interactions.

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(can be expanded in the future)

turn_id
BigInt

An unique key used to identify a game cycle.

transaction_id
String (36)

An unique key to indicate a specific financial activity. This key will guarantee that a transaction is handled
only once.

game_code
Int

An unique game code in the Integrator

game_name
String

An unique game name

debit_amount
String (20)

The amount requested to be withdrawn from the player’s wallet. The value must be a positive number above
zero. String representation of BigDecimal(15,5)

Output parameters

api
String

The unique api name that sent from the Integrator in request, value must be set to ''do-debit-user-ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

transaction_id
String (36)

The same transaction_id as was sent in the request for this response. An unique key to indicate a specific
financial transaction. This key will guarantee that a transaction is handled only once.

user_id
String (128)

An operator’s unique identifier for each player.

7

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

balance
String (20)

Available money in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus balance in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

bonus_amount
String (20)

The bonus amount from the total debit amount. * Cannot be more than debit amount. String representation of
BigDecimal(15,5)

game_token
String (255)

Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully. If no error is detected, this code value is
0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather gives details of the
error.

currency
String

The currency of the balance

timestamp

String (15)

Time representation in UNIX milliseconds format.

3.4 Credit API

• Description

The Credit API enables the Integrator platform to perform a financial transaction of returning

money into the player's wallet through the operator’s server. When calculating the results, a player

that loses has a credit amount of 0. A player that wins, is credited the total of the payout amount.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-credit-user-ingame''

An unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_game_token
string (255)

An unique identifier which is generated before (in auth api) by the operator to identify a session’s interactions.

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(can be expanded in the future)

turn_id
BigInt

An unique key, to identify a game cycle.

transaction_id
String (36)

An unique key used to indicate a specific financial activity. This key will guarantee that a transaction is
handled only once.

8

game_code
Int

An unique game code in the Integrator

game_name
String

An unique game name

credit_amount
String(20)

The amount requested to be fill up the player’s wallet. The value must be a positive number above zero. String
representation of BigDecimal(15,5)

Output parameters

api
String

An unique api name that sent from the Integrator in request, value must be set to ''do-credit-user-ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

transaction_id
String (36)

The same transaction_id as was sent in the request for this response. An unique key to indicate a specific
financial transaction. This key will guarantee that a transaction is handled only once.

user_id
String (128)

An operator’s unique identifier for each player.

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

balance
String (20)

Available money in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus balance in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

bonus_amount
String(20)

The bonus amount from the total credit amount. * Cannot be more than credit amount. String representation of
BigDecimal(15,5)

game_token
String (255)

Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully.
If no error is detected, this code value is 0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather gives details of the
error.

currency
String

The currency of the balance

timestamp

String (15)

Time representation in UNIX milliseconds format.

3.5 Rollback API

• Description

During a debit transaction, there is a possibility of transactions being canceled and therefore

rolled back. Rollback API is designed to deal with exceptions received from the operator (i.e. when

the server disconnects, or an invalid error response is returned from the operator’s end). The debit

9

transaction is converted into a rollback transaction, using the same transaction id and the debit

amount field is renamed to rollback amount. It is crucial for the rollback to use a separate method

from the debit in order to avoid errors and data mix-ups.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-rollback-user-ingame''

An unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_game_token
string (255)

An unique identifier which is generated before (in auth api) by the operator to identify a session’s interactions.

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(can be expanded in the future)

turn_id
BigInt

An unique key, to identify a game cycle.

transaction_id
String (36)

An unique key to indicate a specific financial activity. This key will guarantee that a transaction is handled
only once.

game_code
Int

An unique game code in the Integrator

game_name
String

An unique game name

rollback_amount
String (20)

The amount requested to be returned to the player’s wallet. The value must be a positive number above zero.
String representation of BigDecimal(15,5)

Output parameters

api
String

An unique api name that sent from the Integrator in request, value must be set to
''do-rollback-user-ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

transaction_id
String (36)

The same transaction_id as was sent in the request for this response. An unique key to indicate a specific
financial transaction. This key will guarantee that a transaction is handled only once.

user_id
String (128)

An operator’s unique identifier for each player.

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

balance
String (20)

Available money in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus balance in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

10

game_token
String (255)

Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully.
If no error is detected, this code value is 0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather gives details of the
error.

currency
String

The currency of the balance

timestamp

String (15)

Time representation in UNIX milliseconds format.

3.6 Get Features API

• Description

The Get Features API enables the Integrator platform to request any kind of bonus program like

free rounds using the operator's side.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-get-features-user-ingame''

An unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_game_token
string (255)

An unique identifier which is generated before (in auth api) by the operator to identify a session’s interactions.

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(can be expanded in the future)

game_code
Int

An unique game code in the Integrator

Output parameters

api
String

An unique api name that sent from the Integrator in request, value must be set to
''do-get-features-user-ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

user_id
String (128)

An operator’s unique identifier for each player.

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

11

balance
String (20)

Available money in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus balance in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

game_token
String (255)

Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully.
If no error is detected, this code value is 0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather gives details of the
error.

currency
String

The currency of the balance

timestamp

String (15)

Time representation in UNIX milliseconds format.

free_rounds JsonObject

The Json Object parameters below

id int

An unique identifier of feature

count int

Count of free games

bet int

Bet to be set to execute features

lines int

Lines to be set to execute features

mpl int

Multiplier of feature games

cp double

Credit price

3.7 Activate Features API

• Description

The Activate Features API enables the Integrator platform to notify operator about player's

activated bonus.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-activate-features-user-ingame''

The unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_game_token
string (255)

An unique identifier which is generated before (in auth api) by the operator to identify a session’s interactions.

12

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(can be expanded in the future)

game_code
Int

An unique game code in the Integrator

free_rounds
JsonObject

Json Object of parameters below

id
int

An unique feature id

win
double

 Win amount in feature. The amount requested to be fillup to the player’s wallet. The value must be a positive
number above or equal zero

Output parameters

api
String

The unique api name that sent from the Integrator in request, value must be set to ''do-activate-features-user-
ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

user_id
String (128)

An operator’s unique identifier for each player.

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

balance
String (20)

Available money in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus balance in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

game_token
String (255)

Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully. If no error is detected, this code value is
0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather gives details of the
error.

currency
String

The currency of the balance

timestamp

String (15)

Time representation in UNIX milliseconds format.

13

3.8 End Features API

• Description

The End Features API enables the Integrator platform come up with a notification regarding the

end of previous features activated by Get Features through the operator's side.

Parameter name Data Type/ Description

Input parameters

api
String, value = ''do-end-features-user-ingame''

The unique api name

data
JsonObject

The json object of parameters below

user_id
string (128)

An operator's unique identifier for each player

user_ip
string (30)

The Internet IP of the computer on which the end user is playing

user_game_token
string (255)

An unique identifier which is generated before (in auth api) by the operator to identify a session’s interactions.

currency
string

The currency code for the player's balance in a particular session: BTC, LTC, USD, EUR, RUB, KZT, UAH
(can be expanded in the future)

game_code
Int

An unique game code in the Integrator

free_rounds
JsonObject

Json Object of parameters below

id
int

An unique feature id

win
double

 Win amount in feature. The amount requested to be credited to the player’s wallet. The value must be a
positive number above or equal zero

Output parameters

api
String

The unique api name that sent from the Integrator in request, value must be set to ''do-end-features-user-
ingame''

success
Boolean

The result of the api request, value must always be true

answer JsonObject of parameters below

operator_id
Int (11)

The operator’s unique identifier

user_id
String (128)

An operator’s unique identifier for each player.

user_nickname
String (32)

The player’s nickname. Characters and numbers only.

balance
String (20)

Available money in the player’s wallet at the time of the request. The value will be presented in the currency
of that session. String representation of BigDecimal(15,5)

bonus_balance
String (20)

Available bonus balance in the player’s wallet at the time of the request. The value will be presented in the
currency of that session. String representation of BigDecimal(15,5)

String (255)

14

game_token Not to be confused with the input auth_token. This token is the session token- An unique identifier which is
generated by the operator to identify a session’s interactions.

error_code
int

Identifies whether or not the request has been processed successfully. If no error is detected, this code value is
0

error_description
String (255)

A string that describes the response. This string is not the message to the player but rather gives details of the
error.

currency
String

The currency of the balance

timestamp

String (15)

Time representation in UNIX milliseconds format.

15

4 Dictionaries

4.1 Currencies Dictionary

Currency code Currency name

BTC Bitcoin cryptocurrency

LTC Litecoin cryptocurrency

USD United States Dollar

EUR Euro

RUB Russian Ruble

KZT Kazakhstan tenge

UAH Ukranian hryvnia

* *

* Can be added any currency in future

16

4.2 Game Codes

The full list * of games can be obtained in json format by executing a request using the GET

method, specifying the operator id in the parameter operator_id:

https://int.apiforb2b.com/frontendsrv/apihandler.api?cmd={%22api%22:%22ls-games-by-operator-id-get

%22,%22operator_id%22:%220%22}

Getting the game image from JSON:

{
 "ico_baseurl": "/game/icons/",
 "groups": [
 {
 "games": [

 {
 ...
 "icons": [
 {
 "ic_h": 221,
 "ic_w": 300,
 "ic_name": "ReelKing_300_221.jpg"
 },
 ...
],
 "gm_title": "Reel King"
 },
 ...
],

 ...
 }
]
}

https://int.apiforb2b.com[ico_baseurl][ic_name]

Example:

https://int.apiforb2b.com/game/icons/ReelKing_300_221.jpg

* New games always in developing. This list can be extended at any time

17

4.3 Error Codes

error_code error_description

0 Completed successfully

1 General error

2 *

3 Insufficient funds

4 Token not found

5 User not found

6 User blocked

7 Transaction not found

8 Transaction timed out

9 *

10 *

11 *
* - Reserved codes for future use

Note: In the event that the same transaction_id is sent more than once, you must send us the same
response with the original error code. In the error description write- transaction has already been proceeded.

18

5. Examples

5.1 Auth

Integrator Request

{
 "data": {
 "user_id": "1",
 "user_id": "127.0.0.1",
 "user_auth_token": "638b779ea073609b28374364bf1eb0de488fb9b5",
 "currency": "BTC"
 },
 "api": "do-auth-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 0,
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.67713",
 "bonus_balance": "0.00",
 "auth_token": "638b779ea073609b28374364bf1eb0de488fb9b5",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "timestamp": "1478008017191"
 },
 "success": true,
 "api": "do-auth-user-ingame"
}

19

5.2 Debit

Integrator request

{
 "data": {
 "user_id": "1",
 "user_ip": "127.0.0.1",
 "user_game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "currency": "BTC",
 "turn_id": 4,
 "transaction_id": "2fa7bfb2-a03a-11e6-8347-00ffa41930b3",
 "game_code": 702,
 "game_name": "BookOfRaClassic",
 "debit_amount": "0.02"
 },
 "api": "do-debit-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 0,
 "transaction_id": "2fa7bfb2-a03a-11e6-8347-00ffa41930b3",
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.67713",
 "bonus_balance": "0.0",
 "bonus_amount": "0.0",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "timestamp": "1478008244952"
 },
 "success": true,
 "api": "do-debit-user-ingame"
}

20

5.3 Credit

Integrator Request

{
 "data": {
 "user_id": "1",
 "user_ip": "127.0.0.1",
 "user_game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "currency": "BTC",
 "turn_id": 5,
 "transaction_id": "2fa7bfb2-a03a-11e6-8347-00ffa41930b3",
 "game_code": 702,
 "game_name": "BookOfRaClassic",
 "credit_amount": "0.02"
 },
 "api": "do-credit-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 0,
 "transaction_id": "2fb1fd48-a03a-11e6-8347-00ffa41930b3",
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.67913",
 "bonus_balance": "0.00",
 "bonus_amount": "0.00",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "timestamp": "1478008244987"
 },
 "success": true,
 "api": "do-credit-user-ingame"
}

21

5.4 Rollback

Integrator Request

{
 "data": {
 "user_ip": "127.0.0.1",
 "user_id": "1",
 "user_game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "currency": "BTC",
 "turn_id": 5,
 "transaction_id": "2fa7bfb2-a03a-11e6-8347-00ffa41930b3",
 "game_code": 702,
 "game_name": "BookOfRaClassic",
 "rollback_amount": "0.02"
 },
 "api": "do-rollback-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 0,
 "transaction_id": "2fb1fd48-a03a-11e6-8347-00ffa41930b3",
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.67913",
 "bonus_balance": "0.00",
 "bonus_amount": "0.00",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "timestamp": "1478008244987"
 },
 "success": true,
 "api": "do-rollback-user-ingame"
}

22

5.5 Get Features

Integrator Request

{
 "data": {
 "user_id": "1",
 "user_ip": "127.0.0.1",
 "user_game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "currency": "BTC",
 "game_code": 702,
 "game_name": "BookOfRaClassic",
 },
 "api": "do-get-features-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 1,
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.67913",
 "bonus_balance": "0.00",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "timestamp": "1478008244987",
 "free_rounds": {
 "id": 1,
 "count": 15,
 "bet": 5,
 "lines": 10,
 "mpl": 2,
 "cp": "1.00"
 }
 },
 "success": true,
 "api": "do-get-features-user-ingame"
}

23

5.6 Activate Features

Integrator Request

{
 "data": {
 "user_id": "1",
 "user_ip": "127.0.0.1",
 "user_game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "currency": "BTC",
 "game_code": 702,
 "game_name": "BookOfRaClassic",
 "free_rounds": {
 "id": 1
 }
 },
 "api": "do-activate-features-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 0,
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.6913",
 "bonus_balance": "0.00",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "timestamp": "1478008244987"
 },
 "success": true,
 "api": "do-activate-features-user-ingame"
}

24

5.7 End Features

Integrator Request

{
 "data": {
 "user_id": "1",
 "user_ip": "127.0.0.1",
 "user_game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "currency": "BTC",
 "game_code": 702,
 "game_name": "BookOfRaClassic",
 "free_rounds": {
 "id": 1,
 "win": 1000
 }
 },
 "api": "do-end-features-user-ingame"
}

Operator Response

{
 "answer": {
 "operator_id": 1,
 "user_id": "1",
 "user_nickname": "Anonimous",
 "balance": "855.6913",
 "bonus_balance": "0.00",
 "error_code": 0,
 "error_description": "ok",
 "currency": "BTC",
 "game_token": "c3720505ad4dfd2b34cdb55bc524f3ffa6941ad7",
 "timestamp": "1478008244987"
 },
 "success": true,
 "api": "do-end-features-user-ingame"
}

25

	1. The Protocol
	2. Creating Backend Communication
	3. Integration API's
	3.1 Open Game URL
	3.2 Authentication of User API
	3.3 Debit API
	3.4 Credit API
	3.5 Rollback API
	3.6 Get Features API
	3.7 Activate Features API
	3.8 End Features API

	4 Dictionaries
	4.1 Currencies Dictionary
	4.2 Game Codes
	4.3 Error Codes

	5. Examples
	5.1 Auth
	5.2 Debit
	5.3 Credit
	5.4 Rollback
	5.5 Get Features
	5.6 Activate Features
	5.7 End Features

